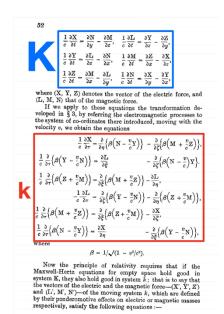
Two Inconsistent Field Expressions for One System, In One Frame

Vesselin C. Noninski April 2, 2025

In a foundational electromagnetic analysis, a single system in a stationary frame K yields in a moving frame k field expressions X = X' and $Y = \frac{Y'}{\beta} + \frac{v}{c}N$, because "[e]vidently the two systems of equations found for system k must express exactly the same thing", with $v \neq 0$, $\beta \neq 1$ (cf. Figure 1, showing also the meaning of the parameters). These expressions tie to K's system, $\frac{1}{c}\frac{\partial X}{\partial t} = \cdots$, $\frac{1}{c}\frac{\partial Y}{\partial t} = \cdots$, presumed consistent with k's $\frac{1}{c}\frac{\partial X'}{\partial \tau} = \cdots$, $\frac{1}{c}\frac{\partial Y'}{\partial \tau} = \cdots$. Yet, rewriting K's equations with k's terms distorts them: $\frac{1}{c}\frac{\partial X'}{\partial t} \rightarrow \frac{1}{c}\frac{\partial X'}{\partial \tau} = \cdots$, while $\frac{1}{c}\frac{\partial Y}{\partial t} \rightarrow \frac{1}{c}\frac{\partial Y}{\partial \tau} \left(\frac{Y'}{\beta} + \frac{v}{c}N\right) = \cdots$. Unless v = 0, $\beta = 1$, which violates the initial conditions, this skews K's form— $Y \neq Y'$, and the derivative misaligns with k's structure. The text asserts both expressions, $\frac{1}{c}\frac{\partial Y'}{\partial \tau} = \cdots$ and $\frac{1}{c}\frac{\partial}{\partial \tau} \left(\frac{Y'}{\beta} + \frac{v}{c}N\right) = \cdots$, hold in k without resolution; for $v \neq 0$, they imply incompatible field behaviors under identical conditions, an unaddressed duality. This persists notwithstanding that $Y = \frac{Y'}{\beta} + \frac{v}{c}N$ is dimensionally inconsistent in the SI unit system, a flaw cloaked by Gaussian units or ad hoc adjustments in natural units, masking the flaw in unit-agnostic derivations.



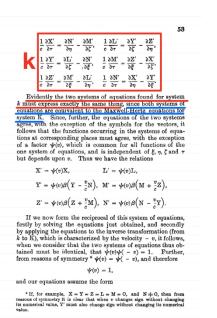


Figure 1. Excerpt from a historical derivation, showing dual field expressions in the moving frame k.